

Resonant Enhanced Modulator Development

J.H. Abeles, G. Pajer, R. Whaley, A. Braun, D. Bechtle, J. Krishnan, T.P. Lee, G. Griffel* Sarnoff Corporation, Princeton, NJ *Princeton Lightwave, Inc., Cranbury, NJ

I. Adesida, S. Rommel University of Illinois, Urbana-Champaign, IL

Embassy Suites LAX-South, Los Angeles, CA

August 1, 2001

Principle of Operation

Resonant Enhanced Modulators

Objectives

- Objective: A Low V_{π} Modulator (< 100 mV)
- Approach: Laterally Coupled InP Based Microring Resonators
- Program Started 6/13/00; to End 6/13/03
- Milestones

24 mos ... Prototype REM

30 mos ... Optimized REM

36 mos ... 12 Deployable REMs

First Year Accomplishments

10/20/00

- Demonstrated Smooth Anisotropic ICP Etching
- Analyzed Loss Requirements for Microrings
- Designed Delay Line Microwave Circuit

2/16/01

- Fabricated Test Structures
- Began Characterizing Test Structures
- Engineering Design Begun

7/30/01

- Achieved High Quality Nanofabrication Process
- Demonstrated InP resonators with Q=20,000
- Demonstrated 2 cm⁻¹ waveguide losses

Milestones Coming Year

- Fabricate Prototype Structure (4/01) late
- Characterize Modulated Ring Properties (6/13) <u>late</u>
- Developmental REM device (12/01)

Tech Transition

- Supply Deployable REMs to System Organization
- Production by Sarnoff

REM Fabrication Activities

Fabrication:

June, 2000 **Program Start**

ICP Characterization

Leica/Cambridge e-beam initial use

October, 2000

Ring nanostructures reported by UIUC

Resist development

Etching condition studies

Leica/Cambridge e-beam dosage studies

Etching of coupling region

February, 2000 Sample microrings delivered to Sarnoff

Resist quality development (cont'd) Pattern interchange (Sarnoff-UIUC)

Sample handling

Stitching issues

May, 2000

Routine characterization of microrings structures at Sarnoff

Resist development (cont'd) Switch to new JEOL e-beam tool Switch to larger rings for diagnostics

Sarnoff Meso-Optics Programs

Lateral Ring Technology (LRT)
Approach

DARPA RFLICs Resonant Enhanced Modulator Program

• NRO Low V_{π} Modulator Program

Vertical Ring Technology (VRT)
Approach

Princeton Lightwave, Inc. Vertical Ring Technology Program

Princeton Lightwave, Inc., a spin-off company from Sarnoff Corp, has begun to pursue interests in meso-optics at Sarnoff (Nov, 2000).

Two PLI staff members participate in the PLI program at Sarnoff:

- G. Griffel
- S. Park

Ring Resonator M-Z Modulators

- Phase modulation due to coupled resonators
- Combine multiple resonators to achieve performance enhancement

		Pa	issband (Gl	Hz)	Photo	on Lifetime	(psec)
diameter	FSR	Finesse=	Finesse=	Finesse=	Finesse=	Finesse=	Finesse=
(um)	(GHz)	3	10	30	3	10	30
5	5968	1989	597	199	0.1	0.3	0.8
10	2984	995	298	99	0.2	0.5	1.6
20	1492	497	149	50	0.3	1.1	3.2
50	597	199	60	20	0.8	2.7	8.0
100	298	99	30	10	1.6	5.3	16.0
			K				
			`				

Reported today

Allows for V_{π} < 100 mV Modulation

- Push-Pull Configuration
- 37 mV = V_{π}
- 10 GHz Operation
- Requires loss of ~1 cm⁻¹
- Optically narrowband

Lateral Ring Technology (LRT)

- Lateral Ring Technology
 - Few lithography steps
 - Coupling strength high
 - + High-index-contrast submicron waveguides
- Complex fabrication

Vertical Ring Technology

- Coupling too weak, except with:
 - » High bend losses (or submicron rings)
 - » High waveguide transition losses
 - » High-index-contrast lower guides

- Submicron lithography
- Uniformity requirements

- + Coupling mediated by epitaxy
- + Active/passive integration easy
- + Optical lithography

Prefer <u>LRT</u> for RF applications ($<40 \mu m$ dia. rings)

Features of Lateral Ring Technology

Coupling strength difficult to achieve; at a premium for smaller structures; wrap-around structure can help

Small diameter (under 40 μm)

Challenges to Implementation of Meso-Optics

- Highly confined waveguides
- Low roughness, high-aspect-ratio waveguide fabrication
- High-strength, low-excess-loss couplers

SiO2 Etch Mask Developed at UIUC

Etching Regimes

Coupling Loss is a Key Issue

- zone "A" -- Well-understood, low loss attainable; depends on material and roughness
- zone "B" -- Poorly understood; low loss believed to require strongly localized "bound array modes" in zones "B" and "C." (Data suggest issues in zone "B.")

Excessive overlap with radiation modes causes loss

zone "C" -- Well understood, low loss attainable; (see zone "A" criteria)

Laterally Coupled InP-based Ring Parameters

Guide width: 0.8 to 1.0 μm

Circumference: 200 to 400 μm

Free Spectral Range: 1.6 to 3.4 nm

Coupler length: 50 to 150 μm

Coupling gap: $0.3 \text{ to } 0.45 \, \mu\text{m}$

FWHM: 0.09 to 0.73 nm

Finesse: 4.7 to 28

Q: 2,000 to 17,000

RT Loss: 0.8 to 4.4 dB

Coupling: 3% to 36%

Optical Parameters

Structure

Parameters

Structure of Waveguide and Active Region

Critical design goals:

Low bending loss
Single mode operation
Strong electro-optic effect

Deeply Etched InP Ring Resontator

Ring Resonator Detail

Experimental Setup

Determining Loss in Linear Waveguides

Fabry-Perot Resonator Formed by Cleaved Facets

The peak to valley ratio measures the attenuation

Attenuation vs Waveguide Width in Straight Guides

Attenuation in Deeply Etched Linear Waveguides

	GaAs	Based	InP Based		
Depth (mm)	2.0	2.5		3.0 – 4.0	
Width (mm)	0.42 - 0.62	0.4	1.8	1.0 – 2.5	
Etch	CAIBE (Ar, Cl ₂)	ICP	RIE (CH4, H2)	ICP	
Loss (cm-1)	2.5	5.0	~1.0	1.5 – 4.5	
Reference	U.Md. (P.T. Ho) PTL 3/2000	Northwestern (S.T. Ho) PTL 12/1999	HHI (Rabus & Hamacher) PTL 8/2001	Sarnoff (J.H. Abeles) 7/2001	

Resonance

Quantum Well Structure:

•10 QWs (InGaAsP/InP)

• λ_g : 1400 nm

•Active Layer Thickness: 0.5 μm

Waveguide width: 1.0 μ m Racetrack circumference: 274 μ m Coupling length: 90 μ m FSR: 2.41 nm Finesse: 21

Q: 13,500 Effective Ring Attenuation: 8.6 cm⁻¹ Coupling: 6.41%

Resonance

Quantum Well Structure:

•10 QWs (InGaAsP/InP)

• λ_g : 1400 nm

•Active Layer Thickness: $0.5 \, \mu m$

 $\begin{tabular}{llll} Waveguide width: & 0.9 \ \mu m \\ Racetrack circumference: & 274 \ \mu m \\ Coupling length: & 90 \ \mu m \\ FSR: & 2.41 \ nm \\ Finesse: & 13 \\ \end{tabular}$

Q: 8,400 Effective Ring Attenuation: 13 cm⁻¹ Coupling: 11%

Finesse and Peak-to-Valley Ratio

$$\Gamma^2 = e^{-\alpha L}$$
 $r^2 = 1 - \kappa^2$
 $(\kappa^2 = \text{power coupling})$

----- Finesse ----- Peak / Valley (dB)

A measurement of (Finesse, Peak / Valley) determines (Γ,r)

Coupling vs Gap Width

Effective Loss Depends on Coupling

Effective attenuation = $(1/L)\ln(t)$, inferred from resonator characteristics (where L is circumference and t is the transmission per round trip)

Zone "B" is contributing significant loss

Requirements for REM

- Photon lifetime must be τ_p < 3 psec for 10 GHz $\{\tau_p = 1/\omega = 1/(2\pi f)\}$
- Photon lifetime must be ~10x the single round trip time {for 10x photon recycling enhancement}
- Therefore single round trip must last <0.3 psec
- Therefore, circumference must be L < 30 μm

need to reduce length and reduce coupling while maintaining low coupling loss

32x Photon Lifetime Enhancement

... from data ...

- Observed Q of 17,000 in a resonator of circumference 265 μm
 - Implies photon lifetime of 85 psec
 - Roundtrip time of 2.6 psec
- Photon lifetime enhancement = 32x

Summary

- Nanofabrication has been demonstrated
 - -- Remains to become a highly reproducible process
 - -- Sufficient for this program
- Microresonator characteristics are encouraging
 - -- Excellent photon lifetime enhancement (x32)
 - -- Exceeds requirements for the REM
- Microresonator characteristics still require refinement
 - -- Need reduction in circumference (~10x)
 - -- Large coupling observed with larger rings bodes well for adequate coupling with smaller rings
- Continue to fabricate rings and zero-in on the smaller sizes
- Go ahead and make prototypes with larger rings (which function at lower frequencies), e.g., a 2 mV, 1 GHz modulator.

Most Significant Accomplishment

Achievement of 32x photon recycling enhancement in a InGaAsP based microring resonator

Photons travel around the ring 32x on average!

Program Roadmap

- Year 2
 - Obtain electrorefractive ring modulator (24 months)
 - Demonstrate electrorefractive ring modulator REM (24 months)
- Year 3
 - Demonstrate 10 GHz electrorefractive ring modulator
 - Demonstrate 100 millivolt class V_{π} modulator (30 months)
 - Deliver 12 REM devices to DARPA (36 months)